Điện tử viễn thông


14/01/2012

Phân tích mạch khuyếch đại âm thanh cơ bản dùng BJT



mach-khuyech-daiTên mạch Khuyếch đại âm tần sử dụng Transistor lưỡng hạt (BJT).
Tác dụng linh kiện :
- C1 : Dẫn tín hiệu vào.
- C6 : Tụ lọc nguồn chính, giá trị của C6 phụ thuộc vào dòng tải, nói cách khác phụ thuộc vào công suất hoạt động của mạch. Mạch có công suất càng lớn, ăn dòng càng lớn thì C6 phải có giá trị càng cao. Nếu không, sẽ gây hiện tượng “đập mạch” có nghĩa là điện áp trên C6 bị nhấp nhô và loa sẽ phát sinh tiếng ù_gọi là ù xoay chiều. Nếu điện áp nuôi mạch được cấp bởi biến áp 50Hz sẽ nghe tiếng ù (như còi tầm), nếu cấp bằng biến áp xung tần số cao sẽ nghe tiếng rít.
- R5-C3 : Hợp thành mạch lọc RC ổn định nguồn cấp và chống tự kích cho tầng k/đ 2, 1. Tuy nhiên nếu mắc ở đây thì tác dụng của R5-C3 không cao. Muốn nâng cao tác dụng của nó bạn phải mắc mắt lọc này về phía cực (+) của C6.
- R3-C2 : Mạch lọc RC ổn định nguồn, chống tự kích cho k/đ 1 (k/đ cửa vào).
- R1-R2 : Định thiên, phân áp để ổn định phân cực tĩnh cho Q1, để Q1 ko gây méo tuyến tính khi k/d thì R1 phải được chỉnh để Q1 làm việc ở chế độ A (tương ứng Ube Q1 ~ 0.8V đối với BTJ gốc silic). Đồng thời R2 phải được chọn có giá trị bằng trở kháng ra của mạch đằng trước. Nếu tín hiệu vào là micro thì R2 có giá trị chính bằng trở kháng của micro.
- R4 : Tải Q1, định thiên cho Q2. Trong mạch này Q1 và Q2 được ghép trực tiếp để tăng hệ số k/đ dòng điện trước khi công suất (Q2 đóng vai trò tiền k/đ công suất). Mặt khác cũng để giảm méo biên độ và méo tần số khi tần số, biên độ của tín hiệu vào thay đổi.
- R7-C4 : Hợp thành mạch hồi tiếp âm dòng điện có tác dụng ổn định hệ số k/đ dòng điện cho Q1, giảm nhỏ hiện tượng méo biên độ. Khi đ/chỉnh giá trị của C4 sẽ thay đổi hệ số k/đ của Q1, nói cách khác đ/c C4 sẽ làm mạch kêu to_kêu nhỏ.
- Q1 : K/đại tín hiệu vào, được mắc theo kiểu E chung.
- Q2 : Đóng vai trò k/đ tiền công suất được mắc kiểu C chung. Tín hiệu ra ở chân E cấp cho 2 BJT công suất. Ở đây, thực chất ko có tín hiệu xoay chiều nào hết, chỉ có điện áp một chiều thay đổi (lên xuống) quanh mức tĩnh ban đầu. Tín hiệu ra ở chân E Q2 được dùng kích thích (thông qua thay đổi điện áp) cho Q3, Q4.
- Q3, Q3 : Cặp BJT công suất được mắc theo kiểu “đẩy kéo nối tiếp“. Hai BJT này thay nhau đóng/mở ở từng nửa chu kỳ của tín hiệu đặt vào. Lưu ý là Q3 dùng PNP, Q4 dùng NPN nhưng phải có thông số tương đương nhau. Kiểu mắc Q2, Q3, Q4 như trên gọi là “đẩy kéo nối tiếp tự đạo pha”
- R9, R10 : Điện trở cầu chì, bảo vệ Q3, Q4 khỏi bị chết khi có 1 trong 2 BJT bị chập.
- D1, D2 : Ổn định nhiệt, bảo vệ tránh cho Q3, Q4 bị nóng. Cơ chế bảo vệ tôi ko giải thích ở đây, các bạn tự xem lại lý thuyết mạch BJT cơ bản.
- PR1 : Điều chỉnh phân cực Q4, thông qua đó chỉnh cân bằng cho “điện áp trung điểm
Nguyên lý hoạt động :
Chế độ tĩnh : Khi tín hiệu vào bằng 0.
- Mạch được thiết kế để Q1, Q2 hoạt động ở chế độ A. Q3, Q4 có thể ở chế độ A hoặc AB.
- PR1 được đ/chỉnh để Q3, Q4 có điện áp chân B bằng nhau, như vậy độ mở của Q3=Q4 và kết quả là điện áp tại điểm C bằng 1/2 điện áp nguồn cấp (theo sơ đồ mạch được cấp 15V thì điện áp điểm C là 7.V), điện áp tại điểm C gọi là “điện áp trung điểm“.
- Tụ C5 được nối vào điểm C. Điện áp ban đầu trên tụ chính bằng điện áp điểm C (7.5V)
Khi tín hiệu vào ở bán kỳ dương (+):
- Điện áp chân B Q1 tăng → Q1 mở thêm, dòng IcQ1 tăng → sụt áp trên R4 (UR4 = R4xIcQ1) tăng làm cho UcQ1 giảm. Độ giảm của UcQ1 tỷ lệ thuận với biên độ tín hiệu vào.
- Vì chân CQ1 nối trực tiếp chân BQ2 nên khi UcQ1 giảm thì UbQ2 giảm theo làm cho Q2 khóa bớt, như vậy dòng IcQ2 giảm xuống dẫn đến điện áp tại điểm A(UA) và điểm B(UB) đều giảm.
- Các bạn để ý : Q3 là PNP, Q4 là NPN do vậy khi UA giảm thì độ mở Q3 tăng (mở thêm), UB giảm thì độ mở Q4 giảm (khóa bớt).
- Vì Q3 mở thêm, Q4 khóa bớt làm cho điện áp tại điểm C tăng lên dẫn tới tụ C5 (ban đầu là 7.5V) nạp, dòng nạp cho C5 đi từ (+) nguồn 15V → CEQ3 → R9 → C5 → loa → mass. Dòng nạp qua loa là đi xuống. Điện áp trên tụ C5 lúc này lớn hơn 7.5V.
Khi tín hiệu vào ở bán kỳ âm (-)
- Điện áp chân B Q1 giảm → Q1 khóa bớt, dòng IcQ1 giảm → sụt áp trên R4 (UR4 = R4xIcQ1) giảm làm cho UcQ1 tăng. Độ tăng của UcQ1 tỷ lệ thuận với biên độ tín hiệu vào.
- Vì chân CQ1 nối trực tiếp chân BQ2 nên khi UcQ1 tăng thì UbQ2 tăng theo làm cho Q2 mở thêm, như vậy dòng IcQ2 tăng lên dẫn đến điện áp tại điểm A(UA) và điểm B(UB) đều tăng.
- Các bạn để ý : Q3 là PNP, Q4 là NPN do vậy khi UA tăng thì độ mở Q3 giảm (khóa bớt), UB tăng thì độ mở Q4 tăng (mở thêm).
- Vì Q3 khóa bớt, Q4 mở thêm làm cho điện áp tại điểm C giảm lên dẫn tới tụ C5 phóng, dòng phóng của C5 đi từ (+) tụ → R10 → CQ4 → mass → loa → (-)C5. Dòng phóng qua loa là đi lên.
Kết luận Như vậy, với cả chu kỳ của tín hiệu vào ta thu được 2 dòng điện liên tục đi xuống/đi lên ở loa, đó chính là tín hiệu xoay chiều ra loa. Cường độ 2 dòng này tỷ lệ thuận với biên độ tín hiệu xoay chiều vào mạch.
Đồ thị thời gian :
bieu-do-thoi-gian
Hoàng Trọng Nghĩa7B/20/60 Nguyễn Lương Bằng, thành phố Hải Dương.
Mobile phone : 0963688799. Email : htnghiahd@gmail.com

Labels:

Mạch chỉnh lưu và ổn áp


1 – Mạch chỉnh lưu điện xoay chiều
1.1 – Bộ nguồn trong các mạch điện tử .
Trong các mạch điện tử của các thiết bị như Radio -Cassette, Âmlpy, Ti vi mầu, Đầu VCD v v… chúng sử dụng nguồn một chiều DC ở các mức điện áp khác nhau, nhưng ở ngoài zắc cắm của các thiết bị này lại cắm trực tiếp vào nguồn điện AC 220V 50Hz, như vậy các thiết bị điện tử cần có một bộ phận để chuyển đổi từ nguồn xoay chiều ra điện áp một chiều , cung cấp cho các mạch trên, bộ phận chuyển đổi bao gồm :
  • Biến áp nguồn : Hạ thế từ 220V xuống các điện áp thấp hơn như 6V, 9V, 12V, 24V v v …
  • Mạch chỉnh lưu : Đổi điện AC thành DC.
  • Mạch lọc Lọc gợn xoay chiều sau chỉnh lưu cho nguồn DC phẳng hơn.
  • Mạch ổn áp : Giữ một điện áp cố định cung cấp cho tải tiêu thụ
Sơ đồ tổng quát của mạch cấp nguồn.
1.2 – Mạch chỉnh lưu bán chu kỳ .
Mạch chỉnh lưu bán chu kỳ sử dụng một Diode mắc nối tiếp với tải tiêu thụ, ở chu kỳ dương => Diode được phân cực thuận do đó có dòng điện đi qua diode và đi qua tải, ở chu kỳ âm , Diode bị phân cực ngược do đó không có dòng qua tải.
Dạng điện áp đầu ra của mạch chỉnh lưu bán chu kỳ.
1.3 Mạch chỉnh lưu cả chu kỳ
Mạch chỉnh lưu cả chu kỳ thường dùng 4 Diode mắc theo hình cầu (còn gọi là mạch chỉnh lưu cầu) như hình dưới.
Mạch chỉnh lưu cả chu kỳ .
  • Ở chu kỳ dương ( đầu dây phía trên dương, phía dưới âm) dòng điện đi qua diode D1 => qua Rtải => qua diode D4 về đầu dây âm
  • Ở chu kỳ âm, điện áp trên cuộn thứ cấp đảo chiều ( đầu dây ở trên âm, ở dưới dương) dòng điện đi qua D2 => qua Rtải => qua D3 về đầu dây âm.
  • Như vậy cả hai chu kỳ đều có dòng điện chạy qua tải.
2 – Mạch lọc và mạch chỉnh lưu bội áp
2.1 – Mạch lọc dùng tụ điện.
Sau khi chỉnh lưu ta thu được điện áp một chiều nhấp nhô, nếu không có tụ lọc thì điện áp nhấp nhô này chưa thể dùng được vào các mạch điện tử , do đó trong các mạch nguồn, ta phải lắp thêm các tụ lọc có trị số từ vài trăm µF đến vài ngàn µF vào sau cầu Diode chỉnh lưu.
Dạng điện áp DC của mạch chỉnh lưu trong hai trường hợp có tụ và không có tụ
  • Sơ đồ trên minh hoạ các trường hợp mạch nguồn có tụ lọc và không có tụ lọc.
  • Khi công tắc K mở, mạch chỉnh lưu không có tụ lọc tham gia , vì vậy điện áp thu được có dạng nhấp nhô.
  • Khi công tắc K đóng, mạch chỉnh lưu có tụ C1 tham gia lọc nguồn , kết quả là điện áp đầu ra được lọc tương đối phẳng, nếu tụ C1 có điện dung càng lớn thì điện áp ở đầu ra càng bằng phẳng, tụ C1 trong các bộ nguồn thường có trị số khoảng vài ngàn µF .
Minh hoạ : Điện dụng của tụ lọc càng lớn thì điện áp đầu ra càng bằng phẳng.
  • Trong các mạch chỉnh lưu, nếu có tụ lọc mà không có tải hoặc tải tiêu thụ một công xuất không đáng kể so với công xuất của biến áp thì điện áp DC thu được là DC = 1,4.AC
2.2 – Mạch chỉnh lưu nhân 2 .
Sơ đồ mạch nguồn chỉnh lưu nhân 2
  • Để trở thành mạch chỉnh lưu nhân 2 ta phải dùng hai tụ hoá cùng trị số mắc nối tiếp, sau đó đấu 1 đầu của điện áp xoau chiều vào điểm giữa hai tụ => ta sẽ thu được điện áp tăng gấp 2 lần.
  • Ở mạch trên, khi công tắc K mở, mạch trở về dạng chỉnh lưu thông thường .
  • Khi công tắc K đóng, mạch trở thành mạch chỉnh lưu nhân 2, và kết quả là ta thu được điện áp ra tăng gấp 2 lần.
3 – Mạch ổn áp cố định
3.1 – Mạch ổn áp cố định dùng Diode Zener.
.
Mạch ổn áp tạo áp 33V cố định cung cấp cho mạch dò kênh trong Ti vi mầu
  • Từ nguồn 110V không cố định thông qua điện trở hạn dòng R1 và gim trên Dz 33V để lấy ra một điện áp cố định cung cấp cho mạch dò kệnh
  • Khi thiết kế một mạch ổn áp như trên ta cần tính toán điện trở hạn dòng sao cho dòng điện ngược cực đại qua Dz phải nhỏ hơn dòng mà Dz chịu được, dòng cực đại qua Dz là khi dòng qua R2 = 0
  • Như sơ đồ trên thì dòng cực đại qua Dz bằng sụt áp trên R1 chia cho giá trị R1 , gọi dòng điện này là I1 ta có
I1 = (110 – 33 ) / 7500 = 77 / 7500 ~ 10mA
Thông thường ta nên để dòng ngược qua Dz ≤ 25 mA
3.2 – Mạch ổn áp cố định dùng Transistor, IC ổn áp .
Mạch ổn áp dùng Diode Zener như trên có ưu điểm là đơn giản nhưng nhược điểm là cho dòng điện nhỏ (≤ 20mA). Để
có thể tạo ra một điện áp cố định nhưng cho dòng điện mạnh hơn nhiều lần người ta mắc thêm Transistor để khuyếch đại về dòng như sơ đồ dưới đây.
Mạch ổn áp có Transistor khuyếch đại
  • Ở mạch trên điện áp tại điểm A có thể thay đổi và còn gợn xoay chiều nhưng điện áp tại điểm B không thay đổi và tương đối phẳng.
  • Nguyên lý ổn áp : Thông qua điện trở R1 và Dz gim cố định điện áp chân B của Transistor Q1, giả sử khi điện áp chân
    E đèn Q1 giảm => khi đó điện áp UBE tăng => dòng qua đèn Q1 tăng => làm điện áp chân E của đèn tăng , và ngược lại …
  • Mạch ổn áp trên đơn giản và hiệu quả nên được sử dụng rất rộng dãi và người ta đã sản xuất các loại IC họ LA78.. để thay thế cho mạch ổn áp trên, IC LA78.. có sơ đồ mạch như phần mạch có mầu xanh của sơ đồ trên.
IC ổn áp họ LA78..                                IC ổn áp LA7805
  • LA7805 IC ổn áp 5V
  • LA7808 IC ổn áp 8V
  • LA7809 IC ổn áp 9V
  • LA7812 IC ổn áp 12V
Lưu ý :
Họ IC78.. chỉ cho dòng tiêu thụ khoảng 1A trở xuống, khi ráp IC trong mạch thì U in > Uout từ 3 đến 5V khi đó IC mới phát huy tác dụng.
3.3 – Ứng dụng của IC ổn áp họ 78..
IC ổn áp họ 78.. được dùng rộng rãi trong các bộ nguồn , như Bộ nguồn của đầu VCD, trong Ti vi mầu, trong máy tính…
Ứng dụng của IC ổn áp LA7805 và LA7808 trong bộ nguồn đầu VCD
4 – Mạch ổn áp tuyến tính (có hồi tiếp)
4.1 – Sơ đồ khối của mạch ổn áp có hồi tiếp .
Sơ đồ khối của mạch ổn áp có hồi tiếp .
* Một số đặc điểm của mạch ổn áp có hồi tiếp :
  • Cung cấp điện áp một chiều ở đầu ra không đổi trong hai trường hợp điện áp đầu vào thay đổi hoặc dòng tiêu thụ của tải thay đổi, tuy nhiên sự thay đổi này phải có giới hạn.
  • Cho điện áp một chiều đầu ra có chất lượng cao, giảm thiểu được hiện tượng gợn xoay chiều.
* Nguyên tắc hoạt động của mạch.
  • Mạch lấy mẫu sẽ theo dõi điện áp đầu ra thông qua một cầu phân áp tạo ra ( Ulm : áp lấy mẫu)
  • Mạch tạo áp chuẩn => gim lấy một mức điện áp cố định (Uc : áp chuẩn )
  • Mạch so sánh sẽ so sánh hai điện áp lấy mẫu Ulm và áp chuẩn Uc để tạo thành điện áp điều khiển.
  • Mạch khuếch đại sửa sai sẽ khuếch đại áp điều khiển, sau đó đưa về điều chỉnh sự hoạt động của đèn công xuất theo hướng ngược lại, nếu điện áp ra tăng => thông qua mạch hồi tiếp điều chỉnh => đèn công xuất dẫn giảm =>điện áp ra giảm xuống.  Ngược lại nếu điện áp ra giảm => thông qua mạch hồi tiếp điều chỉnh => đèn công xuất lại dẫn tăng => và điện áp ra tăng lên =>> kết quả điện áp đầu ra không thay đổi.
4.2 – Phân tích hoạt động của mạch nguồn có hồi tiếp trong Ti vi đen trắng Samsung
Điện áp đầu vào còn gợn xoay chiều Điện áp đầu ra bằng phẳng
Mạch ổn áp tuyến tính trong Ti vi Samsung đen trắng .
* Ý nghĩa các linh kiện trên sơ đồ.
  • Tụ 2200µF là tụ lọc nguồn chính, lọc điện áp sau chỉnh lưu 18V , đây cũng là điện áp đầu vào của mạch ổn áp, điện áp này có thể tăng giảm khoảng 15%.
  • Q1 là đèn công xuất nguồn cung cấp dòng điện chính cho tải , điện áp đầu ra của mạc ổn áp lấy từ chân C đèn Q1 và có giá trị 12V cố định .
  • R1 là trở phân dòng có công xuất lớn ghánh bớt một phần dòng điện đi qua đèn công xuất.
  • Cầu phân áp R5, VR1 và R6 tạo ra áp lấy mẫu đưa vào chân B đèn Q2 .
  • Diode zener Dz và R4 tạo một điện áp chuẩn cố định so với điện áp ra.
  • Q2 là đèn so sánh và khuyếch đại điện áp sai lệch => đưa về điều khiển sự hoạt động của đèn công xuất Q1.
  • R3 liên lạc giữa Q1 và Q2, R2 phân áp cho Q1
* Nguyên lý hoạt động .
  • Điện áp đầu ra sẽ có xu hướng thay đổi khi Điện áp đầu vào thay đổi, hoặc dòng tiêu thụ thay đổi.
  • Giả sử : Khi điện áp vào tăng => điện áp ra tăng => điện áp chân E đèn Q2 tăng nhiều hơn chân B ( do có Dz gim
    từ chân E đèn Q2 lên Ura, còn Ulm chỉ lấy một phần Ura ) do đó UBE giảm => đèn Q2 dẫn giảm => đèn Q1 dẫn giảm => điện áp ra giảm xuống. Tương tự khi Uvào giảm, thông qua mạch điều chỉnh => ta lại thu được Ura tăng. Thời gian điều chỉnh của vòng hồi tiếp rất nhanh khoảng vài µ giây và được các tụ lọc đầu ra loại bỏ, không làm ảnh hưởng đến chất lượng của điện áp một chiều => kết quả là điện áp đầu ra tương đối phẳng.
  • Khi điều chỉnh biến trở VR1 , điện áp lấy mẫu thay đổi, độ dẫn đèn Q2 thay đổi , độ dẫn đèn Q1 thay đổi => kết quả là điện áp ra thay đổi, VR1 dùng để điều chỉnh điẹn áp ra theo ý muốn .
4.3 – Mạch nguồn Ti vi nội địa nhật.
Sơ đồ mạch nguồn ổn áp tuyến tính trong Ti vi mầu nội địa Nhật .
  • C1 là tụ lọc nguồn chính sau cầu Diode chỉnh lưu.
  • C2 là tụ lọc đầu ra của mạch nguồn tuyến tính.
  • Cầu phân áp R4, VR1, R5 tạo ra điện áp lấy mẫu ULM
  • R2 và Dz tạo ra áp chuẩn Uc
  • R3 liên lạc giữa Q3 và Q2, R1 định thiên cho đèn công xuất Q1
  • R6 là điện trở phân dòng, là điện trở công xuất lớn .
  • Q3 là đèn so sánh và khuếch đại áp dò sai
  • Khuếch đại điện áp dò sai
  • Q1 đèn công xuất nguồn
  • => Nguồn làm việc trong dải điện áp vào có thể thay đổi 10%, điện áp ra luôn luôn cố định .
Bài tập : Bạn đọc hãy phân tích nguyên lý hoạt động của mạch nguồn trên.
Nguồn: http://hocnghe.com.vn

Labels:

Mạch dao động


1 – Mạch tạo dao động

1.1 – Khái niệm về mạch dao động.
Mạch dao động được ứng dụng rất nhiều trong các thiết bị điện tử, như mạch dao động nội trong khối RF Radio, trong bộ kênh Tivi mầu, Mạch dao động tạo xung dòng , xung mành trong Tivi, tạo sóng hình sin cho IC Vi xử lý hoạt động v v…
  • Mạch dao động hình Sin
  • Mạch dao động đa hài
  • Mạch dao động nghẹt
  • Mạch dao động dùng IC
1.2 – Mạch dao động hình SinNgười ta có thể tạo dao động hình Sin từ các linh kiện L – C hoặc từ thạch anh.
* Mạch dao động hình Sin dùng L – C
Mạch dao động hình Sin dùng L – C
  • Mach dao động trên có tụ C1 // L1 tạo thành mạch dao động L -C Để duy trì sự dao động này thì tín hiệu dao động được đưa vào chân B của Transistor, R1 là trở định thiên cho Transistor, R2 là trở gánh để lấy ra tín hiệu dao động ra , cuộn dây đấu từ chân E Transistor xuống mass có tác dụng lấy hồi tiếp để duy trì dao động. Tần số dao động của mạch phụ thuộc vào C1 và L1 theo công thức
f = 1 / 2.p.( L1.C1 )1/2
* Mạch dao động hình sin dùng thạch anh.
Mạch tạo dao động bằng thạch anh .
  • X1 : là thạch anh tạo dao động , tần số dao động được ghi trên thân của thach anh, khi thạch anh được cấp điện thì nó tự dao động ra sóng hình sin.thạch anh thường có tần số dao động từ vài trăm KHz đến vài chục MHz.
  • Đèn Q1 khuyếch đại tín hiệu dao động từ thạch anh và cuối cùng tín hiệu được lấy ra ở chân C.
  • R1 vừa là điện trở cấp nguồn cho thạch anh vừa định thiên cho đèn Q1
  • R2 là trở ghánh tạo ra sụt áp để lấy ra tín hiệu .
Thạch anh dao động trong Tivi mầu, máy tính
1.3 – Mạch dao động đa hài.
Mạch dao động đa hài tạo xung vuông
* Bạn có thể tự lắp sơ đồ trên với các thông số như sau :
  • R1 = R4 = 1 KW
  • R2 = R3 = 100KW
  • C1 = C2 = 10µF/16V
  • Q1 = Q2 = đèn C828
  • Hai đèn Led
  • Nguồn Vcc là 6V DC
  • Tổng giá thành lịnh kiện hết khoảng 4.000 VNĐ
* Giải thích nguyên lý hoạt động : Khi cấp nguồn , giả sử đèn Q1 dẫn trước, áp Uc đèn Q1 giảm => thông qua C1 làm áp Ub đèn Q2 giảm => Q2 tắt => áp Uc đèn Q2 tăng => thông qua C2 làm áp Ub đèn Q1 tăng => xác lập trạng thái Q1 dẫn bão
hoà và Q2 tắt , sau khoảng thời gian t , dòng nạp qua R3 vào tụ C1 khi điện áp này > 0,6V thì đèn Q2 dẫn => áp Uc đèn Q2 giảm => tiếp tục như vậy cho đến khi Q2 dẫn bão hoà và Q1 tắt, trạng thái lặp đi lặp lại và tạo thành dao động, chu kỳ dao động phụ thuộc vào C1, C2 và R2, R3.
2 – Thiết kế mạch dao động bằng IC
IC tạo dao động XX555 ; XX có thể là TA hoặc LA v v …
Mạch dao động tạo xung bằng IC 555
  • Bạn hãy mua một IC họ 555 và tự lắp cho mình một mạch tạo dao động theo sơ đồ nguyên lý như trên.
  • Vcc cung cấp cho IC có thể sử dụng từ 4,5V đến 15V , đường mạch mầu đỏ là dương nguồn, mạch mầu đen dưới cùng là âm nguồn.
  • Tụ 103 (10nF) từ chân 5 xuống mass là cố định và bạn có thể bỏ qua ( không lắp cũng được )
  • Khi thay đổi các điện trở R1, R2 và giá trị tụ C1 bạn
    sẽ thu được dao động có tần số và độ rộng xung theo ý muốn theo công
    thức.
T = 0.7 × (R1 + 2R2) × C1 và f = 
1.4
(R1 + 2R2) × C1
T = Thời gian của một chu kỳ toàn phần tính bằng (s)
f = Tần số dao động tính bằng (Hz)
R1 = Điện trở tính bằng ohm (W )
R2 = Điện trở tính bằng ohm ( W )
C1 = Tụ điện tính bằng Fara ( W )
T = Tm + Ts
T : chu kỳ toàn phần
Tm = 0,7 x ( R1 + R2 ) x C1 Tm : thời gian điện mức cao
Ts = 0,7 x R2 x C1
Ts : thời gian điện mức thấp
Chu kỳ toàn phần T bao gồm thời gian có điện mức cao Tm và thời gian có điện mức thấp Ts
  • Từ các công thức trên ta có thể tạo ra một dao động xung vuông có độ rộng Tm và Ts bất kỳ.
  • Sau khi đã tạo ra xung có Tm và Ts ta có T = Tm + Ts và f = 1/ T
* Thí dụ bạn thiết kế mạch tạo xung như hình dưới đây.
Mạch tạo xung có Tm = 0,1s , Ts = 1s
Bài tập : Lắp mạch dao động trên với các thông số :
  • C1 = 10µF = 10 x 10-6 = 10-5 F
  • R1 = R2 = 100KW = 100 x 103 W
  • Tính Ts và Tm = ? Tính tần số f = ?
Bài làm :
  • Ta có Ts = 0,7 x R2 x C1 = 0,7 x 100.103 x 10-5 = 0,7 s
    Tm = 0,7 x ( R1 + R2 ) x C1 =
    = 0,7 x 200.103 x 105 = 1,4 s
  • => T = Tm + Ts = 1,4s + 0,7s = 2,1s
  • => f =1 / T = 1/2,1 ~ 0,5 Hz
3 – Mạch dao động nghẹt
Mạch dao động nghẹt (Blocking OSC)
Mạh dao động nghẹt có nguyên tắc hoạt động khá đơn giản, mạch được sử dụng rộng rãi trong các bộ nguồn xung (switching), mạch có cấu tạo như sau :
Mạch dao động nghẹt
Mạch dao động nghẹt bao gồm :
  • Biến áp : Gồm cuộn sơ cấp 1-2 và cuộn hồi tiếp 3-4, cuộn thứ cấp 5-6
  • Transistor Q tham gia dao động và đóng vai trò là đèn công xuất ngắt mở tạo ra dòng điện biến thiên qua cuộn sơ cấp.
  • Trở định thiên R1 ( là điện trở mồi )
  • R2, C2 là điện trở và tụ điện hồi tiếp
Có hai kiểu mắc hồi tiếp là hồi tiếp dương và hồi tiếp âm, ta xét cấu tạo và nguyên tắc hoạt động của từng mạch.
* Mạch dao động nghẹt hồi tiếp âm .
  • Mạch hồi tiếp âm có cuộn hồi tiếp 3-4 quấn ngược chiều với cuộn sơ cấp 1-2 , và điện trở mồi R1 có trị số nhỏ khoảng 100KW , mạch thường được sử dụng trong các bộ nguồn công xuất nhỏ khoảng 20W trở xuống
  • Nguyên tắc hoạt động : Khi cấp nguồn, dòng định thiên qua R1 kích cho đèn Q1 dẫn khá mạnh, dòng qua cuộn sơ cấp 1-2 tăng nhanh tạo ra từ trường biến thiên => cảm ứng sang cuộn hồi tiếp, chiều âm của cuộn hồi tiếp được đưa về chân B đèn Q thông qua R2, C2 làm điện áp chân B đèn Q giảm < 0V => đèn Q lập tức chuyển sang trạng thái ngắt, sau khoảng thời gian t dòng điện qua R1 nạp vào tụ C2 làm áp chân B đèn Q tăng => đèn Q dẫn lặp lại chu kỳ
    thứ hai => tạo thành dao động .
  • Mạch dao động nghẹt hồi tiếp âm có ưu điểm là dao động nhanh, nhưng có nhược điểm dễ bị xốc điện làm hỏng đèn Q do đó mạch thường không sử dụng trong các bộ nguồn công xuất lớn.
* Mạch dao động nghẹt hồi tiếp dương .
  • Mạch dao động nghẹt hồi tiếp dương có cuộn hồi tiếp 3-4 quấn thuận chiều với cuộn sơ cấp 1-2, điện trở mồi R1 có trị số lớn khoảng 470KW
  • Vì R1 có trị số lớn, lên dòng định thiên qua R1 ban đầu nhỏ => đèn Q dẫn tăng dần => sinh ra từ trường biến thiên
    cảm ứng lên cuộn hồi tiếp => điện áp hồi tiếp lấy chiều dương hồi tiếp qua R2, C2 làm đèn Q dẫn tăng => và tiếp tục cho đến khi đèn Q dẫn bão hoà, Khi đèn Q dẫn bão hoà, dòng điện qua cuộn 1-2 không đổi => mất điện áp hồi tiếp => áp chân B đèn Q giảm nhanh và đèn Q lập tức chuyển sang trạng thái ngắt, chu kỳ thứ hai lặp lại như trạng
    thái ban đầu và tạo thành dao động.
  • Mạch này có ưu điểm là rất an toàn dao động từ từ không bị xốc điện, và được sử dụng trong các mạch nguồn công xuất lớn như nguồn Ti vi mầu.
* Xem lại lý thuyết về cảm ứng điện từ :
Thí nghiệm về hiện tượng cảm ứng điện từ trong biến áp.
Ở thí nghiệm trên ta thấy rằng, bóng đèn chỉ loé sáng trong thời điểm công tắc đóng hoặc ngắt, nghĩa là khi dòng điện chạy qua cuộn sơ cấp biến đổi, trong trường hợp có dòng điện chạy qua cuộn sơ cấp nhưng không đổi cũng không tạo ra điện áp cảm trên cuộn thứ cấp.
Nguồn: hocnghe.com.vn

Labels:

Điện từ trường


1 -  Khái niệm về từ trường.

* Nam châm và từ tính .
Trong tự nhiên có một số chất có thể hút được sắt gọi là nam châm tự nhiên.
Trong công nghiệm người ta luyện thép hoặc hợp chất thép để tạo thành nam châm nhân tạo.
Nam châm luôn luôn có hai cực là cực bắc North (N) và cực nam South (S) , nếu chặt thanh nam châm ra làm 2 thì ta lại được hai nam châm mới cũng có hai cực N và S – đó là nam châm có tính chất không phân chia..
Nam châm thường được ứng dụng để sản xuất loa điện động, micro hoặc mô tơ DC.
* Từ trường
Từ trường là vùng không gian xung quanh nam châm có tính chất truyền lực từ lên các vật liệu có từ tính, từ trường là tập hợp của các đường sức đi từ Bắc đến cực nam.
namcham
* Cường độ từ trường
Là đại lượng đặc trưng cho độ mạnh yếu của từ trường, ký hiệu là H đơn vị là A/m
* Độ từ cảm
Là đại lượng đặc trưng cho vật có từ tính chịu tác động của từ trường, độ từ cảm phụ thuộc vào vật liệu . VD  Sắt có độ từ cảm mạnh hơn đồng nhiều lần . Độ từ cảm được tính bởi công thức
B = µ.H
Trong đó B : là  độ từ cảm
µ : là độ từ thẩm
H :  là cường độ từ trường
* Từ thông
Là số đường sức đi qua một đơn vị diện tích, từ thông tỷ lệ thuật với cường độ từ trường.
tuthong
* Ứng dụng của Nam châm vĩnh cửu.
Nam châm vĩnh cửu được ứng dụng nhiều trong thiết bị điện tử, chúng được dùng để sản xuất Loa, Micro và các loại Mô tơ DC.
speaker1
2 – Từ trường của dòng điện đi qua dây dẫn thẳng.
tutruongdongdc
Thí nghiệm trên cho thấy, khi công tắc bên ngoài đóng, dòng điện đi qua bóng đèn làm bóng đèn sáng đồng thời dòng điện đi qua dây dẫn sinh ra từ trường làm lệch hướng kim nam châm .
Khi đổi chiều dòng điện, ta thấy kim nam châm lệch theo hướng ngược lại , như vậy dòng điện đổi chiều sẽ tạo ra từ trường cũng đổi chiều.
2. Từ trường của dòng điện đi qua cuộn dây.
tutruongcuonday
  • Khi ta cho dòng điện chạy qua cuộn dây, trong lòng cuộn dây xuất hiện từ trường là các đường sức song song, nếu lõi cuộn dây được thay bằng lõi thép thì từ trường tập trung trên lõi thép và lõi thép trở thành một chiếc nam châm điện, nếu ta đổi chiều dòng điện thì từ trường cũng đổi hướng
  • Dòng điện một chiều cố định đi qua cuộn dây sẽ tạo ra từ trường cố định, dòng điện biến đổi đi qua cuộn dây sẽ tạo ra từ trường biến thiên.
  • Từ trường biến thiên có đặc điểm là sẽ tạo ra điện áp cảm ứng trên các cuộn dây đặt trong vùng ảnh hưởng của từ trường , từ trường cố định không có đặc điểm trên.
  • Ứng dụng:
    Từ trường do cuộn dây sinh ra có rất nhiều ứng dụng trong thực tế, một ứng dụng mà ta thường gặp trong thiết bị điên tử đó là Rơ le điện từ.
zole
Rơ le điện từ
Khi cho dòng điện chạy qua cuộn dây, lõi cuộn dây trở thành một nam châm điện hút thanh sắt và công tắc đựoc đóng lại, tác dụng của rơ le là dùng một dòng điện nhỏ để điều khiển đóng mạch cho dòng điện lớn gấp nhiều lần.
3. Lực điện từNếu có một dây dẫn đặt trong một từ trường, khi cho dòng điện chạy qua thì dây dẫn có một lực đẩy => đó là lực điện từ, nếu dây dẫn để tụ do chúng sẽ chuyển động trong từ trường, nguyên lý này được ứng dụng khi sản xuất loa điện động.
hoatdongcualoa1
Nguyên lý hoạt động của Loa  ( Speaker )
Cuộn dây được gắn với màng loa và đặt trong từ trường mạnh giữa 2 cực của nam châm , cực S là lõi , cực N là phần xung quanh, khi cho dòng điện xoay chiều chạy qua cuộn dây , dưới tác dụng của lực điện từ cuộn dây sẽ chuyển động, tốc động chuyển động của cuộn dây phụ thuộc vào tần số của dòng điện xoay chiều, cuộn dây chuyển động được gắng vào màng loa làm màng loa chuyển động theo, nếu chuyển động ở tần số > 20 Hz chúng sẽ tạo ra sóng âm tần trong dải tần số tai người nghe được.
4. Cảm ứng điện từ .
Cảm ứng điện từ là hiện tượng xuất hiện điện áp cảm ứng của cuộn dây được đặt trong một từ trường biến thiên.
Ví dụ : một cuộn dây quấn quanh một lõi thép , khi cho dòng điện xoay chiều chay qua, trên lõi thép xuất hiện một từ trường biến thiên, nếu ta quấn một cuộn dây khác lên cùng lõi thép thì hai đầu cuộn dây mới sẽ xuất hiện điện áp cảm ứng. Bản thân cuộn dây có dòng điện chạy qua cũng sinh ra điện áp cảm ứng và có chiều ngược với chiều dòng điện đi vào.
Nguồn: hocnghe.com.vn

Labels:

13/01/2012

Cuộn cảm

Viết đến đây mình tạm thời không viết nữa vì blog đang trong quá trình nâng cấp, thử nghiệm nên hệ thống comment, readmore của blog chưa hoàn thiện dẫn tới việc xem blog không được tổng quát, gây phiền phức, nếu các bạn có gì trao đổi thì gửi qua mail của mình nhá, thangzero@gmail.com
Trong thời gian tới nếu admin trao quyền admin cho mình thì mình sẽ tuyển thêm một số bạn giỏi làm cộng tác viên giúp mình, trường ĐHCN mình điện tử rất mạnh mà,các bạn giúp đỡ nhé, còn nữa, một số bài đăng cũ của tác giả WWW.Minh chưa phân được chủ đề với lại nhiều bài bị lỗi do post ảnh, các bạn thông cảm nhá mình chưa thể sửa được

1 – Cuộn cảm

1.1 -  Cấu tạo của cuộn cảm.
Cuộn cảm gồm một số vòng dây quấn lại thành nhiều vòng, dây quấn được sơn emay cách điện, lõi cuộn dây có thể là không khí, hoặc là vật liệu dẫn từ như Ferrite hay lõi thép kỹ thuật .
 
Cuộn dây lõi không khí  Cuộn dây lõi Ferit
Ký hiệu cuộn dây trên sơ đồ :   L1 là cuộn dây lõi  không khí, L2 là cuộn dây lõi ferit, L3 là cuộn  dây có lõi chỉnh, L4 là cuộn dây lõi thép kỹ thuật
1.2 -  Các đại lượng đặc trưng của cuộn cảm.
a) Hệ số tự cảm ( định luật Faraday)
Hệ số tự cảm là đại lượng đặc trưng cho sức điện động cảm ứng của cuộn dây khi có dòng điện biến thiên chạy qua.
L = ( µr.4.3,14.n2.S.10-7 ) / l
  • L : là hệ số tự cảm của cuôn dây, đơn vị là Henrry (H)
  • n : là số vòng dây của cuộn dây.
  • l : là chiều dài của cuộn dây tính bằng mét (m)
  • S : là tiết diện của lõi, tính bằng m2
  • µr : là hệ số từ thẩm của vật liệu làm lõi .
b) Cảm kháng
Cảm kháng của cuộn dây là đại lượng đặc trưng cho sự cản trở dòng điện của cuộn dây đối với dòng điện xoay chiều .
ZL = 2.3,14.f.L
  • Trong đó :  ZL là cảm kháng, đơn vị là Ω
  • f : là tần số đơn vị là Hz
  • L : là hệ số tự cảm , đơn vị là Henry
Thí nghiệm về cảm kháng của cuộn
dây với dòng điện xoay chiều
Thí nghiệm trên minh họa:
Cuộn dây nối tiếp với bóng đèn sau đó được đấu vào các nguồn điện 12V
nhưng có tần số khác nhau thông qua các công tắc K1, K2 , K3 , khi K1
đóng dòng điện một chiều đi qua cuộn dây mạnh nhất ( Vì  ZL = 0 ) => do đó bóng đèn sáng nhất, khi K2 đóng dòng điện xoay chỉều 50Hz đi qua cuộn dây yếy hơn ( do ZL tăng ) => bóng đèn sáng yếu đi, khi K3 đóng , dòng điện xoay chiều 200Hz đi qua cuộn dây yếu nhất ( do ZL tăng cao nhất) => bóng đèn sáng yếu nhất.
=> Kết luận : Cảm kháng  của cuộn dây tỷ lệ với hệ số tự cảm của cuộn dây và tỷ lệ với tần số  dòng điện xoay chiều, nghĩa là dòng điện xoay chiều có tần số càng cao thì đi qua cuộn dây càng khó, dòng điện một chiều có tần số f = 0 Hz vì  vậy với dòng một chiều cuộn dây có cảm kháng ZL = 0
c) Điện trở thuần của cuộn dây.
Điện trở thuần của cuộn dây là điện trở mà ta có thể đo được bằng đồng
hồ vạn năng, thông thường cuộn dây có phẩm chất tốt thì điện trở thuần
phải tương đối nhỏ so với cảm kháng, điện trở thuần còn gọi là điện trở
tổn hao vì chính điện trở này sinh ra nhiệt khi cuộn dây hoạt động.
1.3 -  Tính chất nạp , xả của cuộn cảm
* Cuộn dây nạp năng lương : Khi cho một dòng điện chạy qua cuộn dây, cuộn dây nạp một năng lượng dưới dạng từ trường được tính theo công thức
W = L.I 2 / 2
  • W : năng lượng ( June )
  • L : Hệ số tự cảm ( H )
  • I dòng điện.
Thí nghiệm về tính nạp xả của cuộn dây.
Ở thí nghiệm trên : Khi K1 đóng, dòng điện qua cuộn dây tăng dần ( do cuộn dây sinh ra cảm kháng chống lại dòng điện tăng đột ngột ) vì vậy  bóng đèn sáng từ từ, khi K1 vừa ngắt và K2 đóng , năng lương nạp trong cuộn dây tạo thành điện áp cảm ứng phóng ngược lại qua bóng đèn làm bóng đèn loé sáng
=> đó là hiên tượng cuộn dây xả điện.
2 – Loa và Micro
2.1 -  Loa  ( Speaker )
Loa là một ứng dụng của cuộn dây và từ trường.
Loa 4Ω – 20W  ( Speaker )
Cấu tạo và hoạt động của Loa ( Speaker )
Cấu tạo của loa :
Loa gồm một nam châm hình trụ có hai cực lồng vào nhau , cực N ở giữa
và cực S ở xung quanh, giữa hai cực tạo thành một khe từ có từ trường
khá mạnh, một cuôn dây được gắn với màng loa và được đặt trong khe từ,
màng loa được đỡ bằng gân cao su mềm giúp cho màng loa có thể dễ dàng
dao động ra vào.
Hoạt động :
Khi ta cho dòng điện âm tần ( điện xoay chiều từ 20 Hz => 20.000Hz )
chạy qua cuộn dây, cuộn dây tạo ra từ trường biến thiên và bị từ trường
cố định của nam châm đẩy ra, đẩy  vào làm cuộn dây dao động =>
màng loa dao động theo và phát ra âm thanh.
Chú ý : Tuyệt
đối ta không được đưa dòng điện một chiều vào loa , vì dòng điện một
chiều chỉ tạo ra từ trường cố định và cuộn dây của loa chỉ lệch về một
hướng rồi dừng lại, khi đó dòng một chiều qua cuộn dây tăng mạnh ( do
không có điện áp cảm ứng theo chiều ngược lai ) vì vậy cuộn dây sẽ bị
cháy .
2.2 – Micro
Micro
Thực chất cấu tạo Micro là một chiếc loa thu nhỏ, về cấu tạo Micro giống loa nhưng Micro có số vòng quấn trên cuộn dây lớn hơn loa rất nhiều vì vậy trở kháng của cuộn dây micro là rất lớn khoảng 600Ω (trở kháng loa từ 4Ω – 16Ω) ngoài ra màng micro cũng được cấu tạo rất mỏng để dễ dàng dao động khi có âm thanh tác động vào.
Loa là thiết bị để chuyển dòng điện thành âm thanh còn micro thì ngược
lại , Micro đổi âm thanh thành dòng điện âm tần.
2.3 – Rơ le  ( Relay)
Rơ le
Rơ le cũng là một ứng dụng của cuộn dây trong sản xuất thiết bị điện tử, nguyên lý hoạt động của Rơle là biến đổi dòng điện thành từ trường thông qua quộn dây, từ trường lại tạo thành lực cơ học thông qua lực hút để thực hiện một động tác về cơ khí như đóng mở công tắc, đóng mở các hành trình của một thiết bị tự động vv…
Cấu tạo và nguyên lý hoạt động của Rơ le
3 – Biến áp
3.1 – Cấu tạo của biến áp.
Biến áp là thiết bị để biến đổi điện áp xoay chiều, cấu tạo bao gồm một cuộn sơ cấp ( đưa điện áp vào ) và một hay nhiều cuộn thứ cấp ( lấy điện áp ra sử dụng) cùng quấn trên một lõi từ có thể là lá thép hoặc lõi  ferit .
Ký hiệu của biến áp
3.2 -  Tỷ số vòng / vol của bién áp .
  • Gọi  n1 và n2 là số vòng của quộn sơ cấp và thứ cấp.
  • U1 và I1 là điện áp và dòng điện đi vào cuộn sơ cấp
  • U2 và I2 là điện áp và dòng điện đi ra từ cuộn thứ cấp.
Ta có các hệ thức như sau :
U1 / U2 = n1 / nĐiện áp ở trên hai cuộn dây sơ cấp và thứ cấp tỷ lệ thuận với số vòng dây quấn.
U1 / U2 = I2 / I1
Dòng điện ở trên hai đầu cuộn dây tỷ lệ nghịch với điện áp, nghĩa là
nếu ta lấy ra điện áp càng cao thì cho dòng càng nhỏ.
3. 3 – Công xuất của biến áp .
Công xuất của biến áp phụ thuộc tiết diện của
lõi từ, và phụ thuộc vào tần số của dòng điện xoay chiều, biến áp hoạt
động ở tần số càng cao thì cho công xuất càng lớn.
3.4 – Phân loại biến áp .
* Biến áp nguồn và biến áp âm tần:
 

Biến áp nguồn  Biến áp nguồn hình xuyến
Biến áp nguồn thường gặp trong Cassete, Âmply .. , biến áp này hoạt động ở tần số điện lưới 50Hz , lõi biến áp sử dụng các lá  Tônsilic hình chữ E và I ghép lại, biến áp này có tỷ số vòng / vol lớn.
Biến áp âm tần sử dụng làm biến áp đảo pha và biến áp ra loa trong các mạch khuyếch đại công xuất âm tần,biến áp cũng sử dụng lá Tônsilic làm lõi từ như biến áp nguồn, nhưng lá tônsilic trong biến áp âm tần mỏng hơn để tránh tổn hao, biến áp âm tần hoạt động ở tần số cao hơn , vì vậy có số vòng vol thấp hơn, khi thiết kế biến áp âm tần người ta thường lấy giá trị tần số trung bình khoảng 1KHz – đến 3KHz.
* Biến áp xung  & Cao áp .
 
Biến áp xung Cao áp
Biến áp xung là biến áp hoạt động ở tần số cao khoảng vài chục KHz như biến áp trong các bộ nguồn xung , biến áp cao áp . lõi biến áp xung làm bằng ferit , do hoạt động ở tần số cao nên biến áp xung cho công xuất rất mạnh, so với biến áp nguồn thông thường có cùng trọng lượng thì biến áp xung có thể cho công xuất mạnh gấp hàng chục lần.
Nguồn: hocnghe.com.vn

Labels: